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Abstract

Many bioinformatics applications would benefit from comparing proteins based on
their biological role rather than their sequence. This manuscript adds two new
contributions. First, a study of the correlation between Gene Ontology (GO) terms
and family similarity demonstrates that protein families constitute an appropriate
baseline for validating GO similarity. Secondly, we introduce GraSM, a novel method
that uses all the information in the graph structure of the Gene Ontology, instead
of considering it as a hierarchical tree. GraSM gives a consistently higher family
similarity correlation on all aspects of GO than the original semantic similarity
measures.
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1 Introduction

The increasing importance of biological ontologies, motivates the development
of similarity measures between concepts or, by extension, between entities
annotated with these concepts [1]. Many Bioinformatics applications would
benefit from using similarity measures to compare proteins based on what
they do rather than using sequence similarity, a common technique to compare
proteins based on how they are. For example, similarity measures can be
applied to improve database querying, filter text-mining results and validate
microarray clustering [2–5].

Most research on acquiring semantic properties of concepts has focused on
semantic similarity, a research field that aims at calculating how similar two
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concepts are based on their semantic properties, normally acquired from cor-
pora [6]. Research on Information Theory developed many semantic similarity
measures. Some of them calculate maximum likelihood estimates for each con-
cept using the corpora, and then calculate the similarity between probability
distributions. Rada et al. emphasized the use of semantic similarity in ontolo-
gies by combining the structure and content of an ontology with statistical in-
formation from corpora [7]. Following this approach, many semantic similarity
measures applied to ontologies have been proposed. Resnik defined a semantic
similarity measure based on the information content of the most informative
common ancestor [8]. The information content of a concept is inversely pro-
portional to its frequency in the corpora. Concepts that are frequent in the
corpora have low information content. For example, the stop words (such as
the) that occur almost everywhere in the text normally provide little semantic
information. Jiang et al. proposed a semantic distance measure based on the
difference between the information content of the concepts and the informa-
tion content of their most informative common ancestor [9]. Lin proposed a
semantic similarity measure based on the ratio between the information con-
tent of the most informative common ancestor and the information content of
both concepts [10].

Recently, Lort et al. investigated the effectiveness of the above semantic sim-
ilarity measures over the GO [11]. The GO (semantic) similarity between
two proteins was calculated as the semantic similarity of their annotated
GO terms. The study compared GO similarity using annotations found in
the UniProt/SwissProt database to their sequence similarity [12]. The results
showed that GO similarity is correlated with sequence similarity, i.e., they
demonstrated the feasibility of using semantic similarity measures in a bio-
logical setting. However, the performance of the similarity measures was not
uniform over the different aspects of GO, and it was not consistent with previ-
ous studies using different corpora either [13]. For example, Resnik’s measure
achieved the strongest correlation in the molecular function aspect and the
weakest correlation in the biological process aspect. One explanation for the
lack of uniformity and consistency can be the significant number of protein
pairs with high GO similarity and low sequence similarity [14]. This was ex-
pected, because proteins sharing a biological role do not necessarily have a
similar sequence [15].

Sequence similarity is not the only kind of structural similarity that can be
computed between proteins. Family similarity is a structural similarity of a
higher level then sequence similarity. Each family describes a set of related
proteins, which can have identical molecular functions, are involved in the
same process, or act in the same cellular location. Classifying proteins in
families has been a common technique to organize them according to their
biological role. For example, the most successful large-scale effort for increas-
ing the coverage of GO annotations within the UniProt database is based on
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the exploitation of family annotations [16]. Unlike standard sequence similar-
ity methods, family categorization is normally based on experimental results
about protein domains, which represent some evolutionarily conserved struc-
ture and have implications on the protein’s biological role. Family similarity
overcomes some of the limitations of sequence similarity, but the correlation
between protein families and semantic similarity has not been studied.

This work extends the research presented above. The contributions of this
work are:

• A study of the correlation between semantic similarities on GO and Pfam
similarities. Pfam is a database of protein families assigned to UniProt pro-
teins [17]. Pfam contains a mixture of manually curated and automatically
generated protein families. Since proteins from same family share biological
roles, the effectiveness of a semantic similarity measure defined over GO can
be calculated based on its correlation with family similarity.
By obtaining a uniform and consistent correlation between GO and family
similarity over the different aspects of GO, this work provides a novel and
stronger demonstration of the feasibility of semantic similarity measures in
a biological setting.

• GraSM (Graph-based Similarity Measure), a novel method for incorporating
the semantic richness of a graph by selecting disjunctive common ancestors
of two concepts. Lord et al. computed the semantic similarity measures
using GO as a hierarchic structure, i.e., they only considered the most in-
formative common ancestor. However, GO is not organized as a tree-like
hierarchy, but as directed acyclic graphs (DAG), one for each aspect. This
enables a more complete and realistic annotation. When all but the most
informative common ancestor nodes are ignored, different possible interpre-
tations of the biologic concepts are disregarded. GraSM, on the other hand,
selects and uses all the disjunctive common ancestors representing all inter-
pretations.
By obtaining a higher correlation using disjunctive common ancestors than
only using the most informative common ancestor, this work demonstrates
the higher effectiveness of GraSM for calculating semantic similarities be-
tween GO terms.

The rest of this manuscript is structured as follows: Section 2 provides a brief
overview of GO; Section 3 presents state-of-the-art semantic similarity mea-
sures; Section 4 describes GraSM in detail; Section 5 explains how to calculate
GO and family similarity between proteins; Section 6 presents the experimen-
tal evaluation and discusses the obtained results; and Section 7 expresses our
main conclusions.
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Fig. 1. Subgraph example of GO.

2 Gene Ontology

An ontology is a specification of a conceptualization that describes concepts
and relationships used within a community [18]. A popular ontology used in
Biology is GO. GO provides a structured controlled vocabulary of gene and
protein biological roles, which can be applied to different species [19]. Since
the activity or function of a protein can be defined at different levels, GO
has three different aspects: molecular function, biological process and cellular
component. Each protein has elementary molecular functions that normally are
independent of the environment, such as catalytic or binding activities. Sets
of proteins interact and are involved in cellular processes, such as metabolism,
signal transduction or RNA processing. Proteins can act in different cellular
localizations, such as nucleus or membrane.

GO organizes the terms in three directed acyclic graphs (DAG), one for each
aspect. Each node of the graph represents a concept, and the edges represent
the links between the concepts (see example in Figure 1). Links can represent
two relationship types: is-a and part-of. GO is a dynamic hierarchy: its content
changes every month with the publication of new release. GO is maintained
by a group of curators, which add, remove and change terms and their rela-
tionships according to requests made by the research community. Any user
can request modifications to GO. This prevents GO from becoming outdated
and from providing incorrect information.

3 Semantic Similarity Measures

Semantic similarity measures can be used to calculate the similarity of two
concepts organized in an ontology. The ontology structure defines the function
Parents(c) that, given a concept c, returns the set of more generic concepts
directly linked to c. In the case of an ontology organized as a tree, Parents(c)
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always returns a single concept. On the other hand, in GO, Parents(c) can
return more than one term (concept), because each aspect of GO is composed
by a set of terms organized as a DAG. Using the function Parents(c) the set
of paths between two concepts ca and cb can be defined as:

Paths(ca, cb) = (1)

{≺ c1, . . . , cn � | (ca = c1) ∧ (cb = cn) ∧
(∀i : (1 ≤ i < n) ∧ (ci ∈ Parents(ci+1)))}.

A concept a is an ancestor of a concept c when there is at least one path from
a to c:

Ancestors(c) = {a | Paths(a, c) 6= ∅}. (2)

Note that since ≺ c �∈ Paths(c, c), we have c ∈ Ancestors(c).

The information content of a concept is inversely proportional to its frequency
in a corpus. The frequency of a concept c, Freq(c), can be defined as the
number of times that c and all its descendants occur:

Freq(c) =
∑
{occur(ci) | c ∈ Ancestors(ci)}. (3)

Note that, for each ancestor a of a concept c, we have Freq(a) ≥ Freq(c),
because the set of descendants of a contains all the descendants of c. An esti-
mate for the occurrence of each GO term is the number of proteins annotated
with it.

An estimate for the likelihood of observing an instance of a concept c is:

Prob(c) =
Freq(c)

maxFreq
, (4)

where maxFreq is the maximum frequency of all concepts. The maxFreq of
each aspect of GO is always equal to the frequency of the maximum term
(root) in the DAG. For example, the GO term t =molecular function has
Prob(t) = 1, because all the GO terms in the molecular function aspect are
descendant of t, and therefore Freq(t) = maxFreq.

The information content of a concept c can be defined as the negative loga-
rithm of its probability:

IC(c) = − log(Prob(c)). (5)
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Note that the information content is monotonic, since it is non-increasing as
we descend in the hierarchy.

Semantic similarity measures assume that the similarity between two con-
cepts is related to the extent to which they share information. The common
ancestors of two concepts c1 and c2 are:

CommonAnc(c1, c2) = (6)

Ancestors(c1) ∩ Ancestors(c2).

Given two concepts c1 and c2, their shared information, Share(c1, c2), can be
defined as the information content of their most informative common ancestor:

Share(c1, c2) = (7)

max{IC(a) | a ∈ CommonAnc(c1, c2)}.

The most informative common ancestor is the one with the largest information
content. Note that Share(c, c) = IC(c), because c ∈ Ancestors(c).

In case of a DAG with multiple roots, two concepts may not have any common
ancestor. In these cases the shared information is zero. This never happens in
GO, since it has a single root for each aspect.

Given two concepts c1 and c2, Resnik defined their semantic similarity as the
information content of their most informative common ancestor:

SimResnik(c1, c2) = Share(c1, c2). (8)

Given two concepts c1 and c2, Jiang&Conrath defined their semantic distance
as the difference between their information content and the information con-
tent of their most informative common ancestor:

distJC(c1, c2) = (9)

IC(c1) + IC(c2)− 2× Share(c1, c2).

Note that Jiang&Conrath’s formula measures a distance, the inverse of sim-
ilarity. A similarity measure based on Jiang&Conrath distance measure can
be defined as:

SimJC(c1, c2) =
1

distJC(c1, c2) + 1
. (10)

distJC + 1 is used to avoid infinity values, since distJC(c, c) = 0.
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Fig. 2. Carbohydrate binding and bacterial binding are two common disjunctive an-
cestors of the terms peptidoglycan binding and polysaccharide binding, since there are
two distinct paths from peptidoglycan binding to carbohydrate binding and binding.

Given two concepts, c1 and c2, Lin defined their similarity as the information
content of their most informative common ancestor over their information
content:

SimLin(c1, c2) =
2× Share(c1, c2)

IC(c1) + IC(c2)
. (11)

4 GraSM

The semantic similarity measures described above only use the most informa-
tive common ancestor of both concepts. Therefore, when applied to a DAG,
these measures discard other common ancestors even if they are disjunctive
ancestors. GraSM assumes that two common ancestors are disjunctive if there
are independent paths from both ancestors to the concept [20]. Independent
paths mean those that use at least one concept of the ontology not used by
the other paths. Two disjunctive ancestors of a concept represent two distinct
interpretations of a concept. For example, Figure 2 shows that carbohydrate
binding and bacterial binding are two common disjunctive ancestors of peptido-
glycan binding and polysaccharide binding, since there are two distinct paths
from peptidoglycan binding to carbohydrate binding and binding. Thus, the
similarity between peptidoglycan binding and polysaccharide binding is smaller
than if peptidoglycan binding only had the ancestor carbohydrate binding. The
similarity is smaller because peptidoglycan binding can also be interpreted as
bacterial binding, which is not an ancestor of polysaccharide binding.

Calculating the similarity between two concepts using just the most informa-
tive common ancestor only accounts for one of the interpretations. However,
similarity measures should also account for other interpretations of both con-
cepts. GraSM selects all the common disjunctive ancestors of two concepts in
a DAG to calculate their similarity.

GraSM considers that a1 and a2 represent disjunctive ancestors of c if there is
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a path from a1 to c not containing a2 and a path from a2 to c not containing
a1:

DisjAnc(c) = (12)

{(a1, a2) |
(∃p : (p ∈ Paths(a1, c)) ∧ (a2 /∈ p)) ∧
(∃p : (p ∈ Paths(a2, c)) ∧ (a1 /∈ p))}

Note that if a1 /∈ Ancestors(a2) and a2 /∈ Ancestors(a1) then a1 and a2 are
disjunctive ancestors of c. For example, in Figure 1 (t2, t3) ∈ DisjAnc(t5).
Otherwise, if a1 ∈ Ancestor(a2) it is still possible that a1 and a2 represent
disjunctive ancestors of c. For example, in Figure 1 (t1, t2) ∈ DisjAnc(t5)
because the path≺ t1, t3, t5 � does not pass through t2, and the path≺ t2, t5 �
does not pass through t1.

Given two concepts c1 and c2, their common disjunctive ancestors are the
most informative common ancestor of disjunctive ancestors of c1 and c2, i.e.,
a1 is a common disjunctive ancestor of c1 and c2 if for each ancestor a2 more
informative than a1, a1 and a2 are a disjunctive ancestor of c1 or c2:

CommonDisjAnc(c1, c2) = (13)

{a1 | a1 ∈ CommonAnc(c1, c2) ∧
∀a2 : [(a2 ∈ CommonAnc(c1, c2)) ∧
(IC(a1) ≤ IC(a2)) ∧ (a1 6= a2)] ⇒
[(a1, a2) ∈ (DisjAnc(c1) ∪DisjAnc(c2))]}

Note that CommonDisjAnc(c, c) = {c} because all the ancestors of c are not
disjunctive ancestors of c, i.e., (c, a) /∈ DisjAnc(c) for all a ∈ Ancestors(c).
In Figure 1, CommonDisjAnc(t4, t5) = {t1, t2} because t2 is the most infor-
mative common ancestor, and t1 and t2 are disjunctive ancestors of t5.

GraSM defines the shared information between c1 and c2 as the average of the
information content of their common disjunctive ancestors:

ShareGraSM(c1, c2) = (14)

{IC(a) | a ∈ CommonDisjAnc(c1, c2)}.

Share can be replaced by ShareGraSM yielding three new variants of the se-
mantic similarity measures presented in the previous Section: SimResnikGraSM ,
SimJCGraSM and SimLinGraSM .
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4.1 Disjunctive Ancestors Redefinition

Formula 12 can be replaced by the following equivalent formula:

DisjAnc(c) = (15)

{(a1, a2), (a2, a1) | IC(a1) ≤ IC(a2)

(∀n,m, k (|Paths(a1, c)| = m ∧ |Paths(a2, c)| = n ∧
|Paths(a1, a2)| = k) ⇒ (m > 0 ∧ n > 0 ∧m > n× k)}

The two formulas are equivalent because when IC(a1) ≤ IC(a2) there are
no paths from a2 to a1, then any path from a2 to c does not contain a1.
Additionally, any path from a1 to c containing a2 uses one of the k paths from
a1 to a2 and one of the n paths from a2 to c, thus there are n× k independent
paths from a1 to c containing a2. Therefore, if m > n× k there is at least one
path from a1 to c not containing a2.

On the other hand, if exists a path from a2 to c not containing a1 and a
path a1 to c not containing a2, then we have m > 0 ∧ n > 0 and assuming
IC(a1) ≤ IC(a2) we have m > n × k because m includes all the paths from
a1 to c containing a2 plus the paths (exists at least one) not containing it.

4.2 Example

By assuming a different number of proteins annotated to each GO term of
Figure 1, Table 1 shows the information content of these terms. Considering
only the subgraph of GO represented in Figure 1 and the values in Table 1, the
set of common ancestors of t4 and t5 in a descendant order of IC is {t2, t1, t0},
and the set of common disjunctive ancestors is CommonDisjAnc(t4, t5) =
{t2, t1}, as described above. Thus, ShareGraSM(t4, t5) = {IC(t2), IC(t1)} =
1.5. The similarity between t4 and t5 with and without using GraSM is:

SimResnik(t4, t5)

= Share(t4, t5) = 2

SimResnikGraSM(t4, t5)

= ShareGraSM(t4, t5) = 1.5

SimJC(t4, t5)
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Table 1
The information content of the GO terms presented in Figure 1 by considering for
each term a different number of proteins annotated with it.

GO term Protein Annotations Freq Prob IC

t0 8 16 1 0

t1 3 8 0.5 1

t2 2 4 0.25 2

t3 1 2 0.125 3

t4 1 1 0.0625 4

t5 1 1 0.0625 4

=
1

IC(t4) + IC(t5)− 2× Share(t4, t5)

=
1

4 + 4− 2× 2
= 0.25

SimJCGraSM(t4, t5)

=
1

IC(t4) + IC(t5)− 2× ShareGraSM(t4, t5)

=
1

4 + 4− 2× 1.5
= 0.2

SimLin(t4, t5)

=
2× Share(t4, t5)

IC(t4) + IC(t5)

=
2× 2

4 + 4
= 0.5

SimLinGraSM(t4, t5) =

=
2× ShareGraSM(t4, t5)

IC(t4) + IC(t5)

=
2× 1.5

4 + 4
= 0.375

If the shared information of one ancestor is high, and then we find another
disjunctive common ancestor with lower information content, it seems that
finding the additional relationship should increase the similarity rather than
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Algorithm 1 ShareGraSM(c1, c2)

1: Anc = CommonAnc(c1, c2)
2: CommonDisjAnc = {}
3: for all a ∈ sortDescByIC(Anc) do
4: isDisj = true
5: for all cda ∈ CommonDisjAnc do
6: isDisj = isDisj ∧

(DisjAnc(c1, (cda, a)) ∨DisjAnc(c2, (cda, a)))
7: end for
8: if isDisj then
9: addTo(CommonDisjAnc, a)

10: end if
11: end for
12: shared = 0
13: for all cda ∈ CommonDisjAnc do
14: shared += IC(cda)
15: end for
16: return shared/sizeof(CommonDisjAnc)

Algorithm 2 DisjAnc(c, (a1, a2))

Require: IC(a1) ≤ IC(a2)
1: nPaths = |Paths(a1, a2)|
2: nPaths1 = |Paths(a1, c)|
3: nPaths2 = |Paths(a2, c)|
4: return nPaths1 ≥ nPaths× nPaths2

lessen it. However, this is an incorrect intuition. Finding a disjunctive common
ancestor means that at least one of the terms has a distinct and more distant
interpretation to the other term, which makes the terms less similar. Thus,
by taking in account the less informative common ancestor, GraSM provides
lower similarities than the original measures.

4.3 Computational Aspect

Algorithm 1 describes a possible implementation of ShareGraSM . It starts by
selecting the common ancestors of both concepts (line 1) and by initializing
the list of common disjunctive ancestors as a empty list (line 2). The algorithm
selects each common ancestor in descending order of information content (line
3). For each selected ancestor, the algorithm checks if the ancestor is dis-
junctive to all the common disjunctive ancestors already selected (lines 4 to
7). If the ancestor is disjunctive, it adds it to the list of common disjunctive
ancestors (line 9). At the end, the algorithm calculates the average of the in-
formation content of all the ancestors in the common disjunctive ancestors list
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Table 2
Semantic similarity measures’ range and normalization parameters.

Smallest Largest a b

Resnik 0 maxIC 1
maxIC 0

Jiang&Conrath 1
2×maxIC+1 1 1 + 1

2×maxIC − 1
2×maxIC

Lin 0 1 1 0

(lines 12 to 16).

Algorithm 2 describes an efficient technique to check if a pair of ancestors
(a1, a2) are disjunctive ancestors of a given concept c based on Formula 15.
The algorithm checks if the number of paths from a1 to c is larger than the
multiplication of the number of paths from a1 to a2 and from a2 to c.

These implementations show that using GraSM is not prohibitively expensive.
In addition to finding the common ancestors, as Share, ShareGraSM only has
to check the list of common ancestors, which is normally much smaller than the
depth of the graph. Counting the number of paths is also not time-consuming.
For example, in the GO distribution there is a table that stores each path
between two GO terms. Therefore ShareGraSM has a worst-case performance
O(k2), where k is the maximum number of common ancestors of two terms.

4.4 Normalization

To compare the performance of all measures, Resnik and Jiang&Conrath’s
measures were normalized to range from 0 to 1 (as Lin’s measure), using a
linear function f(x) = a × x + b. Table 2 presents the parameters a and b
defined according to the largest and smallest value of each measure, where
maxIC represents the maximum information content obtained in the respec-
tive aspect of GO. The range of each measure was derived from the observation
that the information content of a term is always larger than the information
content of its ancestors, and the information content of a term ranges from
0 to maxIC. The parameters are not affected by using GraSM, since GraSM
does not modify the range of the shared information.

Assuming that maxIC = 10, the normalized similarities of the previous ex-
ample are:

SimResnik(t4, t5) =
2

maxIC
= 0.2
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SimResnikGraSM(t4, t5) =
1.5

maxIC
= 0.15

SimJC(t4, t5)

= (1 +
1

2×maxIC
)× 0.25− 1

2×maxIC
= 0.2125

SimJCGraSM(t4, t5)

= (1 +
1

2×maxIC
)× 0.2− 1

2×maxIC
= 0.16

The similarities using Lin’s measure remain the same after normalization.

5 Protein Similarity

The performance of each measure was evaluated based on the correlation be-
tween GO and family similarity. The GO similarity between two proteins is
the average similarity of the GO terms annotated to them. Since proteins have
simultaneous biological roles, their similarity uses for each term annotated to
each protein its similarity to the most similar term annotated to the other
protein:

GOSim(p1, p2) = (16)

GOSim(p1, T erms(p2)) + GOSim(p2, T erms(p1))

2

GOSim(p1, T erms2) = (17)

{GOSim(t1, T erms2) | t1 ∈ Terms(p1)}

GOSim(t1, T erms2) = (18)

max{Sim(t1, t2) | t2 ∈ Terms2}

The function Terms(p) gives all the terms assigned to the protein p in the
GOA (Gene Ontology Annotation) database, which provides GO annotations
of UniProt proteins [12,16].
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The family similarity between two proteins is the number of families they
share:

FamSim(p1, p2) = |Fam(p1) ∩ Fam(p2)|. (19)

The function Fam(p) gives all the Pfam families assigned to the protein p in
UniProt.

The goal is to measure the correlation between GO and family similarity
using different semantic similarity measures to calculate the GO similarity.
The correlation coefficients were calculated using the following formula:

corr(x, y) =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
, (20)

where xi and yi are the GO and family similarities, respectively.

5.1 Example

Consider two proteins pa and pb annotated to {t1, t2} and {t3, t4}, respec-
tively. Assume Sim(t1, t3) = 0.8, Sim(t1, t4) = 0.6, Sim(t2, t4) = 0.4 and
Sim(t2, t3) = 0.2. Assume also that pa and pb belong to the families {PF001, PF002}
and {PF002, PF003}, respectively. The GO similarity between pa and pb is
calculated using Formula 16 as follows:

GOSim(pa, pb) =

GOSim(pa, {t3, t4}) + GOSim(pb, {t1, t2})
2

The similarity between pa and the terms annotated with pb is calculated using
Formula 17 as follows:

GOSim(pa, {t3, t4}) =

{GOSim(t1, {t3, t4}), GOSim(t2, {t3, t4})}

The similarity between pb and the terms annotated with pa is calculated using
Formula 17 as follows:

GOSim(pb, {t1, t2}) =

{GOSim(t3, {t1, t2}), GOSim(t4, {t1, t2})}
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The similarities between each term and each set of terms is calculated using
Formula 18 as follows:

GOSim(t1, {t3, t4}) =

max{Sim(t1, t3), Sim(t1, t4)} = Sim(t1, t3) = 0.8

GOSim(t2, {t3, t4}) =

max{Sim(t2, t3), Sim(t2, t4)} = Sim(t2, t4) = 0.4

GOSim(t3, {t1, t2}) =

max{Sim(t3, t1), Sim(t3, t2)} = Sim(t1, t3) = 0.8

GOSim(t4, {t1, t2}) =

max{Sim(t4, t1), Sim(t4, t2)} = Sim(t1, t4) = 0.6

Using these values in the above formulas we get:

GOSim(pa, {t3, t4}) = {0.8, 0.4} = 0.6

GOSim(pb, {t1, t2}) = {0.8, 0.6} = 0.7

GOSim(pa, pb) =
0.6 + 0.7

2
= 0.65

The family similarity between pa and pb is calculated using Formula 19 as
follows:

FamSim(pa, pb) = |{PF002}| = 1

6 Results

GraSM was evaluated with the 500 proteins with the largest number of GO
annotations from the December 2004 releases of UniProt and GO. These pro-
teins were annotated to 234 distinct Pfam families, with an average of 2.5
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Table 3
Correlation coefficients for each aspect of GO and each semantic similarity measure
with and without using GraSM.

Resnik Jiang&Conrath Lin

original GraSM increase original GraSM increase original GraSM increase

Function 0.404 0.432 6.9% 0.535 0.543 1.5% 0.404 0.426 5.4%

Process 0.246 0.365 48.4% 0.697 0.725 4.0% 0.418 0.526 25.8%

Component 0.216 0.272 25.9% 0.306 0.310 1.3% 0.255 0.279 9.4%

families per protein. Figure 3 presents the correlation for the top-k most an-
notated proteins, with k ranging from 100 to 500. The average number of GO
annotations for the top 100 proteins is 33.3, and 23.8 for the top 500 proteins.
The decrease in the number of annotations does not affect the correlation,
since there is a stable correlation for the different top-k protein sets. This
shows that, on the tested proteins, the number of annotations does not bias
the correlation.

Table 3 presents the correlation coefficients obtained by all measures for the
top 500 proteins. The results show a strong correlation between GO and family
similarity. Having a strong correlation means that GO similarity should in-
crease as we select protein pairs that share more families. Figure 4 shows this
behavior by presenting how much GO similarity increases as compared with
the GO similarity of protein pairs not sharing any family. The GO similarity
increase was calculated as the ratio of the average GO similarity of protein
pairs sharing a certain number of families to the average GO similarity of pro-
tein pairs not sharing any family. All charts show that GraSM outperforms
the original measures without exception.

Of the three measures, the one proposed by Jiang&Conrath obtained the
strongest correlation in all aspects. Lin’s measure obtained a stronger or equiv-
alent correlation than Resnik’s measure in all aspects. Resnik’s measure as-
signs an identical similarity to many different pairs of GO terms, since it
only uses the information content of the shared ancestor. This explains why
Resnik’s measure obtained the lowest correlation coefficients. The ranking of
the measures is consistent with previous studies using different corpora, and
it is uniform over the different aspects of GO [13]. On the contrary, the mea-
sure ranking obtained by Lord et al. was neither consistent nor uniform [11].
In their study, there was a different ranking for each aspect: the strongest
correlation in the biological process aspect was achieved by Jiang&Conrath’s
measure, in the cellular component aspect by Lin’s measure, and in the molec-
ular function aspect by Resnik’s measure. The correlation coefficients obtained
in this study are not directly comparable to the ones obtained by Lord et al.,
since this work is measuring a different correlation using more recent UniProt
and GO releases. However, the uniformity and consistency demonstrates that
family similarity is more appropriate to validate semantic similarity measures
than sequence similarity. This was expected, since family similarity is less
error-prone than sequence similarity for creating and validating GO annota-
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Fig. 3. The charts compare the correlation between GO and family similarity ob-
tained by different semantic similarity measures over the top-k most annotated
proteins, with k ranging from 100 to 500.
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Fig. 4. The charts show the GO similarity increase as we select protein pairs sharing
more families. The GO similarity increase is the ratio of the average GO similarity
of protein pairs sharing a certain number of families to the average GO similarity
of protein pairs not sharing any family.
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Fig. 5. The charts compare the correlation of automated (IEA) and manual
(not(IEA)) annotations using SimJCGraSM over the top-k most annotated proteins,
with k ranging from 100 to 500.
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Table 4
Statistics of the version of GO used in the evaluation.

Function Process Component

terms 7437 9055 1489

edges 8664 14356 2157

density 1.16 1.59 1.45

tions [21].

Table 3 shows a higher correlation in the biological process aspect, and a lower
correlation in the cellular component aspect. This was expected, because the
biological process aspect has the largest number of terms and edges, more than
50% of all GO, and because the cellular component aspect only contains 8% of
all the terms in GO. Moreover, proteins that share a family can be localized in
distinct cellular components. Resnik’s measure is the most affected by having
such a small amount of terms, since in this aspect a significant number of GO
terms pairs have the same common ancestor. This explains the instability of
the correlation obtained by Resnik’s measure in Figure 4(c).

GraSM increased the correlation of all the semantic similarity measures tested.
This shows that using disjunctive ancestors to calculate the shared information
of two terms improves the effectiveness of semantic similarity measures. The
improvement is proportional to the density (number of edges over the number
of terms) of each aspect (see Table 4). This was expected, because having
more edges per term increases the probability of having multiple common
disjunctive ancestors. For example, the highest improvement (48%) is in the
biological process aspect, which also has the largest density.

To cope with the large amount of sequences being produced, a significant
number of proteins have been functionally characterized by automated tools,
which produce less precise and more generic annotations than manual anno-
tations. Figure 5 compares the correlation obtained by automated and man-
ual annotations using SimJCGraSM over the top-k most annotated proteins,
with k ranging from 100 to 500. The correlation of manual annotations is less
uniform than the correlation of automated annotations. Manual annotations
have a higher quality than automated annotations, but manual curation is a
time-consuming task that currently covers less than 5% of UniProt. Thus, the
manual annotations are not so well distributed as automated annotations. For
example, the set of tested proteins contains proteins manually annotated to
more than 60 GO terms and proteins manually annotated to less than 6 GO
terms. In addition, most automated annotations are generic and, therefore,
closer to family annotations. Thus, the unbalanced distribution and speci-
ficity of manual annotations explains why their correlation is less uniform and
most of the times smaller than the correlation of automated annotations.
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Fig. 6. Output of FuSSiMeG containing the functional semantic similarity of P42973
and O85465 UniProt proteins using the SimJCGraSM measure.

GO has two types of edges is-a and part-of. The results presented in this
manuscript were obtained by using both types of edges. Since more than 90%
of the edges are is-a, using different edge weights has almost no effect on
the results. An ontology normally starts by adding the terms and simple re-
lationships to provide a complete coverage of the target domain. Over time,
the ontology tends to grow less in the number of terms than in the number
of relationships. We believe that GO is not an exception, and therefore the
quantity and quality of the relationships will improve. The number of pairs of
terms having multiple ancestors will grow, and therefore make GraSM even
more effective than tree-based semantic similarity measures.

7 Conclusions

This manuscript shows a strong correlation between GO and family similar-
ity. The correlation is more stable than shown before for sequence similarity.
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Jiang&Conrath’s measure obtained the best performance with Lin’s measure
following. The worst performance was obtained by Resnik’s measure. This
ranking was uniform over the different aspects of GO and consistent with
previous studies. This shows that family similarity is an appropriate baseline
for validating GO similarity. Therefore, this manuscript provides a novel and
stronger demonstration of the feasibility of semantic similarity measures in a
biological setting.

This manuscript presents GraSM, a novel measure that incorporates the se-
mantic richness of a graph by selecting disjunctive common ancestors of two
concepts. GraSM obtained a higher correlation using disjunctive common an-
cestors than only using the most informative common ancestor, which demon-
strates the effectiveness of GraSM for calculating the similarity between GO
terms. It is expected that this improvement will increase over time as GO
captures more relationships from the biological domain. GraSM is not spe-
cific to GO and can also be applied to other graph-structured taxonomies,
such as WordNet [22]. We expect that GraSM will improve the calculation of
conceptual similarity between words with multiple senses. For example, when
comparing the words Fluid with Fluent or Liquid. Thus, future research may
involve the application of GraSM to other taxonomies.

All the semantic similarity measures described in this document were imple-
mented by FuSSiMeG (Functional Semantic Similarity Measure between Gene-
Products), which measures the functional similarity between proteins based on
the semantic similarity of the GO terms annotated to them [23]. FuSSiMeG is
publicly available on the Web (http://xldb.fc.ul.pt/rebil/tools/ssm/),
affording the similarity calculation on the fly. Figure 6 shows the semantic
similarities between the GO terms annotated to two given proteins, which are
displayed by FuSSiMeG using the SimLinGraSM measure. Besides the similar-
ity of the annotated GO terms, their specificity cannot be disregarded when
comparing two proteins. For example, both proteins can be annotated with a
generic GO term (100% similarity), but this does not mean that they are simi-
lar since many other proteins are also annotated to this term. Thus, FuSSiMeG
displays the weighted similarity between the GO terms, which divides the se-
mantic similarity by the information content of both terms.
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